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ANALYTICAL MODELLING OF INFILLED
FRAME STRUCTURES - A GENERAL REVIEW

Francisco J. Crisafulli', Athol J. Carrz, and Robert Park’

ABSTRACT

The analytical modelling of infilled frames is a complex issue because these structures exhibit a highly non-
linear inelastic behaviour resulting from the interaction of the masonry infill panel and the surrounding frame.
This paper presents a general review of the different procedures used for the analysis of infilled frames, which
can be grouped in local or micro-models and simplified or macro-models, depending on the degree of
refinement used to represent the structure. The finite element formulation and the equivalent truss mechanism
are the typical examples of each group. The advantages and disadvantages of each procedure are pointed out,
and practical recommendations for the implementation of the ditferent models are indicated.

INTRODUCTION

Infilled frame structures are used to provide lateral resistance in
regions of high seismicity, especially in those places where
masonry is still a convenient material, due to economical and
traditional reasons. Furthermore, infilled frame buildings
designed and constructed before the development of actual
seismic codes constitute an important part of the high-risk
structures in different countries. The rehabilitation of these
buildings to resist seismic actions implies, as a first step, the
assessment of the structural behaviour. Consequently, the
analytical modelling of this type of structure represents an
important issue for engineers and researchers involved in
seismic design.

Structural engineers have largely ignored the influence of
masonry panels when selecting the structural configuration,
assurning that these panels are brittle elements when compared
with the frame. The design practice of neglecting the infill
during the formulation of the mathematical model leads to
substantial inaccuracy in predicting the lateral stiffness,
strength and ductility. The reluctance of numerous engineers to
consider the contributions of the masonry infills has been due
to the inadequate knowledge concerning the composite
behaviour of infilled frames, and to the lack of practical
methods for predicting the stiffness and strength. It is worth
noting that most of the computer programs commonly used by
designers are not provided with some rational and specific
elements for modelling the behaviour of the masonry infills.
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The aim of this paper is to review the approaches used for the
analysis of infilled frame structures. The different techniques
proposed in the literature for idealizing this structural type can
be divided into two groups, namely, local or micro-models and
simplified or macro-models. The first group involves the
models, in which the structure is divided into numerous
elements to take account of the local effects in detail, whereas
the second group includes simplified models based on a
physical understanding of the behaviour of the infill panel. In
the later case, a few elements are used to represent the effect of
the masonry infill as a whole. Both types of models will be
discussed in the following sections.

It is evident from experimental observations that [I] these
structures exhibit a highly non-linear inelastic behaviour. The
most important factors contributing to the non-linear behaviour
of infilled frames arise from material non-linearity. These
factors can be summarized as follows:

e Infill Panel: cracking and crushing of the masonry,
stiffness and strength degradation.

e  Surrounding Frame: cracking of the concrete, yielding
of the reinforcing bars, local bond slip.

¢  Panel-Frame Interfaces: degradation of the bond-friction
mechanism, variation of the contact length.

Geometric non-linear effects can also occur in infilled frames,
especially when the structure is able to resist large horizontal
displacements. However, these effects do not present any
particularity and can be considered in the analysis using the
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same methodologies applied to reinforced concrete or steel
structures.

The non-linear effects mentioned above introduce analytical
complexities which required sophisticated computational
techniques to be properly considered in the modelling.
Furthermore, the material properties are difficult to define
accurately, especially for masonry. These facts complicate the
analysis of infilled frames and represent one of the main
reasons to explain why infill panels have been considered as
"non-structural elements”, despite the strong influence on the
global response.

It is worth noting that infilled frame structures cannot be
modelled as elasto-plastic systems due to the stiffness and
strength degradation occurring under cyclic loading. More
realistic models should be used to obtain valid results,
particularly in the dynamic analysis of short period structures,
where the energy dissipation capacity and shape of the
hysteresis loops may have strong influence in the response.

DIAGONAL STRUT MODEL
General Description

Polyakov (as reported by Klinger and Bertero [2] and Mallick
and Sevemn [3]) conducted one of the first analytical studies
based on elastic theory. From his study, complemented with
tests on masonry walls diagonally loaded in compression, he
suggested that the effect of the masonry panels in infilled
frames subjected to lateral loads could be equivalent to a
diagonal strut (see Figure 1). Later, Holmes [4] took up this
idea and proposed that the equivalent diagonal strut should
have a width equal to one third of the length of the panel.
Stafford Smith [5] refined the approach and started a series of
tests to investigate more precisely the width of the equivalent
strut.  This task was continued by many other researchers.
Nowadays, the diagonal strut model is widely accepted as a
simple and rational way to describe the influence of the
masonry panels on the infilled frame.

\

Figure 1: Diagonal strut model for infilled frames.

When the structure is subjected to cyclic or dynamic loading,

the use of only one diagonal strut resisting compressive and
tensile forces cannot describe properly the internal forces
induced in the members of the frame. In this case, at least two
struts following the diagonal directions of the panel must be
considered to represent approximately the effect of the masonry
infill. It is usually assumed that the diagonal struts are active
when compressive forces develop in them.  However,
compression only elements are not available in common elastic
computer programs. In this case, Flanagan et al [6]
recommend the use of tension-compression truss members with
half of the equivalent strut area in each diagonal direction. The
use of this simplified model results in significant changes in the
internal forces in the surrounding frame, especially the axial
forces in the columns (tensile forces decrease, whereas
compressive forces increase).

The assumption of a compression only strut is acceptable on the
basis that the bond strength at the panel-frame interfaces and
the tensile strength of the masonry are very low. Tensile forces,
therefore, can be transferred through the interfaces only for
small levels of seismic excitation. This consideration may not
be valid when either shear connectors are used at the interfaces
or the masonry panel is reinforced with horizontal or vertical
bars. Refined models, however, can consider the tensile
behaviour, which usually does not affect significantly the
results.

Modified Diagonal Strut Model

The single diagonal strut model is simple and capable of
representing the influence of the masonry panel in a global
sense. This model, however, cannot describe the local effects
resulting from the interaction between the infill panel and the
surrounding frame. As a result, the bending moments and shear
forces in the frame members are not realistic and the location of
potential plastic hinges cannot be adequately predicted. For
these reasons the single diagonal strut model has been moditied
by different researchers, as illustrated in Figure 2. For
simplicity, the struts acting just on one direction have been
indicated in this figure.

Zamic and Tomazevic [7, 8, 9] proposed the model illustrated
in Fig. 2 (a) based on their experimental results. In these tests,
the damage in the upper zone of the masonry panel occurred off
the diagonal, probably due to perturbation introduced by the
devices used to apply the lateral and vertical loads in the
corners of the frame. Consequently, in the proposed model the
upper end of the diagonal strut is not connected to the beam-
column joint. This model could be applied in those cases
where a shear failure develops at the top of the columns,
although it does not represent the mechanism usually observed
in laboratory tests.

Figures 2 (b), (c) and (d) show multiple struts models proposed
by Schmidt (as reported by Koénig [4]), Chrysostomou [10],
and Crisafulli [1], respectively. The main advantage of these
models, in spite of the increase of complexity, is the ability to
represent the actions in the frame more accurately. Syrmakesis
& Vratsanou [11] and San Bartolomé [12] increased the
number of struts and used in their analyses a model similar to
that illustrated in Fig. 2 (c) with five and nine parallel struts,
respectively, in each direction..
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Figure 2: Modification of the diagonal strut model and multiple struts models.

A more complex model was developed by Thiruvengadam [13]
for the dynamic analysis of infilled frames. The model consists
of a moment resisting frame with a number of pin joined
diagonals and vertical struts uniformly distributed in the panel.
These diagonals represent the shear and axial stiffness of the
masonry infill. In order to take into account the partial
separation at the panel-frame interfaces, the contact length is
calculated and those ineftective struts are removed. In a similar
way, the effect of openings can be considered by removing the
struts crossing the opening area. Due to the complexity and
refinement involved in this multiple strut model, it may be
considered as an intermediate approach between the micro-
models and macro-models.

The strut models presented above are not capable of describing
the response of the infilled frame system when horizontal shear
sliding occurs in the masonry panel. For this case, Fiorato et
al. [14] proposed a "knee braced frame" to represent the
behaviour, and Leuchars & Scrivener [15] suggested the model
illustrated in Figure 3. The double strut can depict the large
bending moments and shear forces induced in the central zone
of the columns. Furthermore, it is possible to consider the
friction mechanism developing along the cracks, which mainly
controls the strength of the system. According to the author's
knowledge, this model was just a suggestion, which was never
implemented to verify its accuracy.

Andreaus et al. [16] generalized the idea of the diagonal strut
and assumed that masonry can be represented using a truss-like
system, in order to generate a sort of finite element mesh
formed by "cells". Each of these cells represents a four-node
element, whose mechanical behaviour is defined by two truss
members located along the diagonal directions of the element.
This approach can be considered as a micro-model, due to the
refinement involved in the representation of the structure.
However, it is included here because the formulation of the

model was based on the diagonal strut concept. D'Asdia er al.
[17] applied this approach to model infilled frame structures.

Friction
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Figure 3: Model proposed to represent the response of the
infilled frame subsequent to horizontal shear
sliding [15].

Properties of the Diagonal Strut

The use of the equivalent strut model is attractive from the
practical point of view. Consequently, much experimental
research has been directed to define the relationships between
the characteristics of the infilled frame system and this
simplified model. The properties required for defining the
strut model depend on the type of analysis (linear elastic or
non-linear) and the type of loading (monotonic, cyclic or
dynamic). For linear elastic analysis only the area and length
of the strut, and the modulus of elasticity are needed to
calculate the elastic stiffness. When non-linear behaviour of
the material is considered, the complete axial force-
displacement relationship is required. Even more complex is
the problem for cyclic or dynamic loading, because the
hysteretic behaviour of the material must be established. In
this section, only the evaluation of the elastic stiffness is



discussed, whereas the hysteretic models are presented in the
next section.

It is usually assumed that the ends of the diagonal members
coincide with the intersection of the centre lines of the beams
and columns of the surrounding frame (see Fig. 1). This
implies that the diagonal length in the model is longer than the
diagonal length of the masonry panels. The difference,
however, is not significant in most cases. The thickness, t, and
the elastic modulus, E, of the strut are equal to those of the
masonry infill. The value of E, adopted in the analysis
obviously depends on the stress level expected in the panels,
since the behaviour of masonry is non-linear. Two approaches
have been used to calculate the equivalent width, w, of the
equivalent strut (see Fig. 4). The first approach is based on
measurements from tests of infilled frame structures, whereas in
the second procedure analytical results (for example, from finite
element analysis) are utilised.
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Figure 4: Effective width of the diagonal strut.

The first approximation to calculate the width of the equivalent
strut was proposed by Holmes [4], in the lack of experimental
data, assuming that:

W= 0

where dy, is the diagonal length of the masonry panel. Later,
Stafford Smith [35, 18, 19, 20] conducted a large series of tests
using infilled steel frames and proposed different charts to
calculate the equivalent width, w. In the first investigations [5],
it was found that the ratio w/d, varied from 0.10 to 0.25.
Additional experimental information [19, 20] allowed a more
refined evalution of w, considering the ratio hy/Ly, and a
dimensionless parameter A, (which takes account of the relative
stiffness of the masonry panel to the frame) defined by:

33

@

In Equation 2, t and hy, are the thickness and the height of the
masonry panel, respectively, 8 is the inclination of the diagonal
of the panel, E,, and E. are the modulus of elasticity of the
masonry and of the concrete, respectively, and I; is the moment
of inertia of the columns.

Paulay and Priestley [21] pointed out that a high value of w
will result in a stiffer structure, and therefore potentially higher
seismic response. They suggested a conservative value useful
for design proposal, given by:

w=0.25d,, (3)

This equation is recommended for a lateral force level of 50%
of the ultimate capacity.

Mainstone [22] and Liauw and Kwan [23] proposed the
following equations based on experimental and analytical data,
respectively:

w=0.161,""d, @)

0.95h,, cosO
W=—t
VA

Figure 5 illustrates the variation of the ratio w/d,, according to
the previous expressions. Equations 1 and 3 are independent of
the parameter A, and they represent just an approximation
useful for simplified analysis. Equations 4 and 5 indicate that
the ratio w/d, decreases when the parameter %, increases,
because the stiffness of the masonry panel is large, when
compared with the stiffness of the frame, and the contact length
is smaller.

(&)

Based on results obtained from framed masonry walls (this is
the case in which the masonry wall is built first and then the
reinforced concrete frame is cast) tested under lateral forces,
Decanini and Fantin [24] proposed two set of equations
considering different states of the masonry infill:

Uncracked panel:

0.748

+0.085 [ it A, <7.85

(6a)

0.393 +0.130 ¢

it A, >7.85
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Cracked panel:
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Figure 5: Variation of the ratio w/d,, for infilled frames as a function of the parameter 2.
0.6 1
0.5 p-mm \] Bazén and Meli [12] proposed also an empirical expression to
\\ calculate the equivalent width w for framed masonry:
0.4 —\
T s | w=(0.35+0.228)h (7)
Uncrack
02 -— neracked where B = (E, A.)/(Gy Ay is a dimensionless parameter, A is
the gross area of the column and A, = (L, t) is the area of the
01 b N masonry panel in the horizontal plane. Figure 7 illustrates the
Cracked ratio w/d,, according to Eq. 7. It is difficult to compare these
0 ; results with previous expressions because they are related to
0 2 4 6 8 10 two different parameters. Despite this fact, it is observed that

An

Figure 6: Ratio w/d, for framed masonry structures
according to Decanini and Fantin [24].

The modulus Ey, to be used in the calculation of the parameter
A, is the modulus corresponding to the considered state
(uncracked or cracked masonry). These equations are plotted
in Figure 6 as a function of the parameter A,. The principal
advantage of the approach proposed by Decanini and Fantin
[24] is the distinction between the uncracked and cracked
stages. The comparison of Egs. 6a and 6b indicates that w
reduces significantly after cracking to a value ranging from
50% to 80% of the initial width. The higher reductions occur
for large values of the parameter A, because the influence of
the infill panel in the response of the system is greater in these
cases.

Eq. 7 leads to higher ratios w/dy, than Egs. 6a and 6b in the case
of stiffer masonry panels (A, and B, in the range of 7 to 10 and 1
to 3, respectively).

It is also important to note that the equivalent width for framed
masonry is usually higher than that for non-integral infilled
frames, according to the empirical equations presented above.
This conclusion is not surprising since framed masonry exhibits
better conditions, bond strength and friction, at the panel-frame
interfaces.

The simplified expression proposed by Paulay and Priestley
[22], Eq. 3, can be considered as an upper limit for the ratio
w/dy,. The expressions recommended for framed masonry (Eqgs.
5, 6 and 7) lead to higher results only when limit conditions are
considered.



wld,

0.4
/
e S o = 50°
0.3 e
0.2 —
—— g =25°
0.1
0
0 1 2 3 4 5 6
B
Figure7: Ratio w/d, for framed masonry structures

(Bazdn and Meli [12]).

Stafford Smith [18, 19] pointed out that the length of contact, z,
between the frame and the panel (see Fig. 4) can be used as a
reference parameter to evaluate either the stiffness or the
strength of the infilled frame. They found that the contact
length is governed by the relative stiffness parameter, Ay, and
proposed that z can be approximated by the following
expression:

T
22,

It is worth noting that Eq. 8 was developed from tests
conducted on small specimens diagonally loaded in
compression. The frames were built with mild steel flat bars of
different sizes and the panels were made of mortar. The panel
dimension were 150 x 150 x 19 mm. In the author's opinion,
the validity of Eq. 8 for infilled frame structures should be
verified considering more realistic experimental data.

h ®

7=

For the model illustrated in Fig. 2 (a), Zamic [25] proposed an
analytical procedure to calculate the area of the strut. It was
assumed that the axial stiffness of the brace is equal to the
stiffness of the triangular part of the masonry wall (considering
shear and flexural deformations). This triangular part forms in
the wall after cracking of the masonry. Therefore, it is possible
to obtain the area of the strut as a function of the geometric and
mechanical properties of the masonry infill. The equation
proposed by Zarnic [25], however, did not consider that both
stiffnesses are related to different displacements (axial
displacement of the strut and horizontal displacement at the top
of the triangular part of the panel). As a result, one of the
stiffnesses should be transformed as a function of the
inclination of the strut.

Chrysostomou [10] used a different approach to calculate the
stiffness of the strut elements of his model, represented in Fig.
2 (c). The compressive force resisted by the masonry panel and
their stiffness were calculated as a function of the storey drift,
using a modification of the expression proposed by Soroushian
et al. [26] for masonry shear walls. In order to define the
properties of the three struts the following approach was
implemented.  The behaviour of the central strut was
represented by expressions similar to those corresponding to
the entire masonry panel. However, it was assumed that the
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central part of the infill panel deteriorates faster than the other
parts. The properties of the off-diagonal struts were evaluated
by considering that the forces and stiffnesses of the three struts
should be equal to the force and stiffness of the entire masonry
wall. The principle of virtual work was used to derive these
expressions, assuming one particular displacement field.
Chrysostomou's procedure to evaluate the properties of the off-
diagonal struts implies that plastic hinges form only at the end
of the columns or beams and that the internal work produced in
these plastic hinges is negligible. The influence of these
hypotheses should be checked to verify the validity of the
model.

Comparison of the Response of Different Strut Models

A preliminary study was conducted to investigate the
limitations of the single strut model, which is the simplest
rational representation used for the analysis of infilled frames.
Furthermore, the influence of different multi-strut models on
the structural response of the infilled frame was studied, with
particular interest in the stiffness of the structure and in the
actions induced in the surrounding frame. Numerical results
obtained from three strut models were compared with those
corresponding to an equivalent finite element model (a detailed
description of this model can be found in reference [1]). Figure
8 illustrates the strut models, which are referred as Model A, B
and C, respectively. The total area of the equivalent masonry
struts, Aps, was the same in all cases. It was assumed in Model
C that the sectional area of the central strut was double of that
corresponding to the off-diagonal struts. Several series of
models were analysed considering a 2.5 m high masonry panel
with a length of 3.6 or 5.0 m, and an elastic modulus for the
masonry of 2 500 or 10 000 MPa. The dimensions of the frame
members were 200 x 200 mm and the elastic modulus of
concrete was 25 000 MPa.

According to the objectives of the study, the analyses were
conducted under static lateral loading assuming linear elastic
behaviour, except for the finite element model in which non-
linear effects were considered to represent the separation of the
panel-frame interfaces. Results are presented in the following
paragraphs in qualitative terms.

The stiffness of the infilled frame was similar in all the cases
considered, with smaller values for model B and C. It must be
noted that for the multi-strut models, especially Model C, the
stiffness may significantly change depending on the distance h,
(see Fig. 8). This distance was evaluated as a fraction of the
contact length, z, defined by Eq. 8 . When h, increases, the
stiffness of the infilled frame reduces, being chiefly controlled
by the mechanical properties of the columns.

Figure 9 compares the bending moment diagrams obtained
from one typical example according to the different models
used in this study. Model A underestimates the bending
moment because the lateral forces are primarily resisted by a
truss mechanism. On the other hand, Model B leads to much
larger values than those corresponding to the finite element
model. A better approximation is obtained from Model C,
although some differences arise at the ends of both columns.
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Figure 8: Different strut models considered in the study.
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Figure 9: Comparison of the bending moments diagrams corresponding to different strut models.

Similar conclusions can be drawn regarding the shear forces.
The maximum axial forces in the frame members are
approximately equal in all the models, even though the
variation of the axial forces along the columns shows some
discrepancy at the top end of the tension column and at the
bottom end of the compression column. It can be concluded
that the single strut model, despite its simplicity, can provide an
adequate estimation of the stiffness of the infilled frame and the

axial forces induced in the frame members by lateral forces.
However, a more refined model, Model C, is required in order
to obtain realistic values of the bending moments and shear
forces in the frame. The results obtained here indicate that the
single strut model represents an adequate tool when the
analysis is focussed on the overall response of the structure.






