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ABSTRACT

This paper outlines a new method for performing base 1line
corrections on accelerograms generated by the gquick-release
dynamic testing method. These accelerograms are produced when
highway bridges are subjected to dynamic excitations by initially
deforming the bridge structure and subsequently quick-releasing
the loads causing the deformation. This base line correction
method is developed in such a way that the step function
character of the quick-release base line is preserved. It is this
feature which allows the static deformations of the structure to
be recovered by integrating the accelerograms. The reliability
of the method is demonstrated by a series of 1laboratory
measurements comparing the displacement time series obtained by
double integration to independently measured displacement
responses. These laboratory comparisons indicate that the offset
displacements are accurate to within about 5% on the average.
The method was applied on accelerograms obtained during a
quick-release full-scale test of the Meloland Road Overcrossing,
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and some examples of this application are presented.

INTRODUCTION

For the past 12 years or so, the University
of Nevada has been conducting quick-release
dynamic tests on highway bridges in order to
determine the dynamic properties of the
structures [Refs. 6, 7, 8]. In these tests,
the bridge structure is first deformed by
hydraulic rams; then high amplitude dynamic
motions are <created by simultaneously
quick-releasing the hydraulic fluid from the
hydraulic jacks. During the course of the
experiments, high density accelerometer
arrays are moved around the structure to
measure the dynamic responses of the entire
structure including the foundations. As a
result, the detailed acceleration response
of the structure is obtained as a direct
consequence of the quick-release tests.
Based on the acceleration response, a
complete modal analysis of the structure can
be performed and its dynamic characteristics
can be determined in detail. However, the
direct measurement of the static deformation
of the structure under the initially applied
hydraulic ram loads ordinarily requires the
use of fixed reference frames. In the past,
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a few selected static deformations of the
structure were measured by using dial gages
or other displacement transducers attached
to fixed references. This procedure is very
inconvenient, time consuming, and expensive.
The expense and inconvenience were the
motivating factors driving the development
of an accurate method of integrating
gquick~-release accelerograns to
displacements.

Such a method can automatically produce the
static displacements of the structure under
the initially applied loads. Therefore, by
integrating the acceleration records
obtained from the quick-release tests at
various points of the structure, the
complete static deformation profile of the
bridge can be obtained as a by-product of
the dynamic response of the structure.

The calculation of displacement time
histories by integrating measured
acceleration records is a very difficult
problem which has been addressed by a number
of researchers [2, 3, 4, 5, 10, 11, 12, 14).
The characteristic of general accelerograms
which makes their successful integration for
accurate displacement time histories so
difficult is that the accelerometer
transducer produces a large signal for the
high frequency content but a very small
signal for the simultaneously recorded long
period content. It is this low frequency
information in the signal which principally
influences the final base 1line of the
displacement time history. While the signal
to noise ratio for the high frequency
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information may be excellent, the signal to
noise ratio for the long period part of the
accelerogram will be much lower. This low
signal to noise ratio —causes serious
problems when the accelerograms are doubly
integrated.

Structural vibration accelerograms produced
by the quick-release method are a special
case where the character of the final base
line is known. The final base line is offset
by the amount of the displacement induced by
the quick-release 1loads and is otherwise
flat. In other words, it is a step function.
This demands a special type of base 1line
correction algorithm. The algorithm required
must allow the offset displacement to occur
in the corrected displacement trace and then
be a flat straight line after the offset. By
extending the earlier work of Brady [4], it
was possible to develop such an algorithm,
which is the subject of this paper.

The objectives of this paper are:

(1) To outline the development of a base
line correction algorithm that allows

the reliable integration of
accelerograms obtained from
quick-release experiments to

displacements and which automatically
produces the static displacement of
the structure under the initially
applied quick-release loads;

(The method presented herein can be
applied on accelerograms obtained from
quick-release dynamic tests, but it
does not solve the problem of
integrating arbitrary accelerogranms to
displacements.)

(ii) To describe a series of laboratory
quick-release experiments that were
performed in order to demonstrate the
validity of the integration method;
and

(iii) To describe briefly the application of
the method on some quick-release
accelerograms obtained during a
full-scale quick-release dynanic test
of a bridge in Southern California.

MATHEMATICAL FORMULATION OF THE INTEGRATION
TECHNIQUE

The measured acceleration record was
adjusted by applying a polynomial base line
correction of the order n. The need for the
application of this base line correction has
been addressed by other researchers in the
past [4]. .

After the polynomial base line correction
is applied to the measured acceleration

trace, the following formula is obtained
for the corrected acceleration.

a*(t) =a(t)-(Co+Cit+Cot2+. .
m
(1)

In the expression above, the C,'s and n are
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the coefficients and the order of the
polynomial correction respectively. The
coefficients and the order of the polynomial
will be evaluated using methods which will
be described later in this section.

Integrating Eg. (1) to velocity and then to
displacement yields:
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In the expressions above, v'(t) and d"(t) are
the corrected velocity and displacement
respectively, v(t) and d(t) are the velocity
and displacement obtained by integrating the
measured acceleration record without any
correction, and C - and C_,, are constants of
integration.

The unknown coefficients in the expressions
above now need to be determined. Previously,
Brady ([4], who applied a second-order
polynomial correction on the acceleration,
required that the velocity have a minimum
mean square value. This procedure had some
merit in this application because it was
known that the original and final velocities
were zero, and minimizing the mean square of
velocity gave the resulting velocity trace
a flat base 1line consistent with the
physical problem. The mean square of the
displacement could also be minimized, but
this clearly would only be applicable to
those cases where it was known that the
final base line of the displacement trace
was flat.

In the case of the quick release problem, it
is known a priori that the base line of the
displacement is going to be a horizontal
straight line shifted by an amount equal to
the unknown release displacement. Therefore,
in this case, the unknown coefficients of
equation (3) can be determined by operating
directly on the displacement. Furthermore,
operation on the displacement will directly
produce the value of the constant C ,, which,
as can be seen from (3), is the value of the
release or offset displacement.

In order that the displacement d'(t) have a
minimum mean square value, the following
equations must hold.

S
.a%‘[[d‘(t)]zdt-o , i=0,1,2,....,n+2 (4)

In the above equations, S 1is the total
length of the record. Substltutlng the
expression of d*(t) from expression (3) into



expression (4) and performing all the
necessary algebraic calculations yields the
following system of equations.

i 1 Cm m+r+3 _ 1 C Sr+2
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where: I, = Id(t)trdt

Equation (5) is the condensed form of a
system of n+2 equations with unknowns the
n+2 coefficients which appear in expression
(3). Soclution of this system will obviously
produce the values of the unknown
coefficients. However, for the system to be
solved, it 1is necessary to evaluate the
integrals I_ which are given by expression
(5). The evaluation of these integrals is
fully described in Appendix II. For the
solution of the system of equations (5), a
computer program was written which, for a
given order n of the polynomial base line
correction, solves the system and produces
the unknown coefficients. These coefficients
are then substituted in Eg. (3) to produce
the corrected displacement record.

For the determination of the "best" order n,
the coefficient of multiple determination
which is described by Al-Khafaji and Tooley
[1] was used. 1In general, if a set of given
data points (x;,f;) is approximated by a
functional approximation F(x) determined by
curve fitting techniques, the coefficient of
multiple determination R? is used to relate
the deviation of the data points (x;,f;) from
the functional approximation F;, to the
average functional value f through the
following equation.

N
Y (F-T)2
) A (6)
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In the expression above, N is the total
number of data points. The closer the value
of R® is to unity, the better the functional
approximation F.

In our case, the integration technique for
accelerograms which was described above was
used to integrate acceleration records for
which the corresponding displacements
records were measured with LVDT transducers.
In this case, the coefficient of multiple
determination was applied on the measured
displacement records.

N
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In the expression above, a(t) is the
displacement record measured by the LVDT and
d(t) is the average of this record.
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The coefficient Rg was evaluated for various
values of the order n of the polynomial
correction. The value of n that yielded a
coefficient Rﬁ closest to unity was chosen as
the optimum order of the polynomial
correction.

For these particular laboratory experiments,
LVDT measurements were available. In a real
field problem however, LVDT measurements are
not usually possible ©because of the
difficulty of establishing a fixed reference
frame. In these cases, an alternate
technique for the determination of the
optimum n is considered. In this case, the
coefficient of multiple determination is
applied on the recorded acceleration record.

N ——
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As before, the optimum n is the one that
yields a coefficient F§ closest to unity. The
implication of this i1s that the optimum n
causes a base line correction which least
disturbs the original measured acceleration
trace (obviously, n is greater than zero).
The -experimental results of the above
described procedure for choosing n are
discussed in detail in the next section of
this paper.

EXPRIMENTAL VERIFICATION OF THE METHOD

In order to establish confidence in the
reliability of the new correction algorithm,
a series of "quick-release" experiments were
performed at the dynamics 1lab of the
University of Nevada, Reno. To perform

these experiments, a three-story
experimental frame was built in the
laboratory. This frame was built to

simulate the general dynamic properties of
full-scale bridges and to measure both
displacement and acceleration traces
simultaneously. Figure 1 shows the frame
with its three heavy steel masses attached
to slender steel columns and the
quick-release hooks at each story. Pulling
and releasing these hooks produces
quick-release motions very similar to those
obtained in the field on full-scale bridges
except that the damping values are much
smaller. Furthermore, the frame was
proportioned in such a way that the
frequencies are in a realistic range for
full-scale bridges. In this case, the
natural frequencies are 1.8, 5.2, and 7.6
hz. Figure 2 shows a typical accelerometer
transducer attached to the mass, while Fig.
3 shows the LVDT displacement transducer
attached to the mass and to the external
fixed reference frame. Both the
acceleration and displacement time histories
of = the frame were recorded using the
Kinemetrics Dataseis field data acquisition
system. This system has a 64-channel
recording capability with 24 FBA 11 force
balance accelerometers. The full-scale
peak-to-peak signal 1is digitized with a
resolution of 4096.






