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ABSTRACT: Recent years have seen a growing interest in utilizing rocking mechanisms 

for the earthquake resistant design of structures. In particular, base rocking mechanisms 

have been implemented in several building and bridge systems, and their effectiveness in 

eliminating residual damage has been demonstrated in experimental and computational 

studies. To improve the current understanding of how rocking structures respond to 

dynamic excitation, and to generalize this response as much as possible, this paper 

focuses on fundamental dynamics. A generic analytical model of an elastic multiple 

degree of freedom (MDOF) structure, allowed to freely rock at its base on a rigid rocking 

interface, is considered. To address the dynamics of controlled rocking structures, a 

central elastic post-tensioned tendon and a viscous damper, which provide additional self-

centering force and energy dissipation, are also incorporated. The equations of motion 

describing the rocking motion are derived for large rotations using a Lagrangian 

formulation. These equations are then linearized about the initial (at-rest) position. The 

subsequent eigenvalue analysis of the linearized system provides valuable information on 

how rocking modifies elastic action, and vice versa. The trends revealed by the analysis 

indicate that the rocking action primarily influences the first few modes of the structure.  

1 INTRODUCTION 

Modal analysis is an essential tool used in structural analysis to identify and reconstruct salient 

characteristics of response. For structures with nonlinear stiffness, non-classical damping and non-

smooth discontinuities, modal analysis is often challenging to perform and the physical interpretation 

of the results may be difficult (Worden and Tomlinson 2001). In some cases, the problem can be 

linearized and the resulting formulation can be used to evaluate the fundamental dynamic 

characteristics of the system (Shaw and Pierre 1993; Makris and Palmeri 2008). Adopting this 

approach, this paper considers modal analysis of a MDOF flexible structure rocking on rigid ground. 

Contrasting the eigenvectors of the system before and during rocking motion provides valuable 

information on how rocking affects the elastic response, and vice versa. A brief discussion outlines 

how the results obtained from this modal analysis may be useful in formulating a simplified approach 

to analysis and design of rocking structures. 

2 DERIVATION AND LINEARIZATION OF STRUCTURAL MODEL  

2.1 The structural model 

The structural model utilized in this study is shown in Figure 1.  The superstructure is a generic elastic 

MDOF system which has n nodes, with both a lumped mass and a mass moment of inertia (associated 

to rigid body rotation of the node about its center of gravity). Each lumped mass mi and rotational 

inertia Ji is located at horizontal distance B, height Hi and radius Ri relative to the edge of the rigid 

foundation beam. Masses are connected with axially rigid rods which allow translation (denoted by ui 

in Fig 1) at each node. The model can be generalized to include rotational degrees of freedom at its 

nodes, however, only translation is considered in this study.  
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Figure 1 – Schematic of a MDOF elastic lumped mass structural model (left) during full contact phase and (mid-

dle) during rocking phase and (right) the idealized shear frame considered in this study 

The structure is assumed to respond in two different phases to a given ground acceleration with 

horizontal and vertical components (represented by 
g

u and
g

v ). For quiescent initial conditions, the 

initial response is elastic and the structure remains in full contact with the rigid ground (see Fig 

1(left)). Once the conditions of uplift are met, the structure starts to rock about either of the pivot 

points, located under the edges of the rigid foundation beam (see Fig 1(middle)). Sliding at these pivot 

points is prevented and the rocking action is described by the angle θ between the foundation beam 

and the ground. For the freely rocking model (no tendon or dissipater), the self-centring force is due to 

the gravitational acceleration g. In the controlled rocking model, an elastic central tendon with 

stiffness kpt and post-tension force Fpt provides an additional self-centring force, while an angular 

viscous damper located at each edge of the foundation beam, with damping coefficient cv , dissipates 

additional energy.   

2.2 Nonlinear EoM 

Initially, the response to ground excitation is linear, and the structure remains in the full contact phase. 

Using the generalized coordinates ui , for i = 1,..,n, the following equation of motion (EoM) describes 

the response:  

       1 g
M u C u K u M u                               (1) 

where the vectors u , u  and u  describe the nodal displacement, velocity and acceleration in the 

direction parallel to the rigid foundation beam. The diagonal mass matrix [M], the classical damping 

matrix [C] and the stiffness matrix [K] are conventionally defined.  

Once the structure starts to rock, the EoM describing force equilibrium in the direction of the 

generalized coordinates
i

u  becomes nonlinear. Evaluating the Lagrangian for these coordinates yield:  

              
2

( 1 ) 1 cos 1( ) sin
g g

M u M H M B u C u K u M u M v g                   (2) 

where the vector  
T

n
HHHH ,...,,.

21
  describes the height of each lumped mass before the 

initiation of rocking motion. Note that the upper sign denotes rocking about right pivot point and the 

lower sign denotes rocking about left pivot point. A similar notation will be used in the following 

equations.  

An additional EoM is required to describe the moment equilibrium about the pivot point. Evaluating 

the Lagrangian for the generalized coordinate θ, this equation can be obtained as:  
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where R  represents the distance from each lumped mass to the pivot point before the initiation of 

rocking, and J  represents the mass moment of inertia lumped at the centre of each node respectively. 

While equations to describe the dynamics of similar MDOF rocking systems have been proposed, 

nonlinearities associated with large rotations were previously ignored and approximate EoM centred 

around the at rest position were formulated (Psycharis 1983; Yim and Chopra 1985).  

The effect of geometric nonlinearity can be observed from the right hand side of Equation 3. 

Depending on the rocking amplitude, the amount of self-centring force due to gravity and the relative 

effect of horizontal and vertical components of ground motion vary. The effective rotational inertia, 

the term in the first parenthesis of Equation 3, is dependent on the elastic deformation of the mass. The 

Coriolis and centrifugal acceleration terms observed in Equations 2-3 indicate the expected coupling 

due to the rotating reference frame. Additionally, nonlinear terms due to post-tensioned tendon and 

external damper can be identified in Equation 3 and these terms agree with previous investigations 

(Dimitrakopoulos and DeJong, 2012).  

2.3 Linearization of nonlinear EoM 

The geometric nonlinearity associated with rocking motion has been discussed in earlier studies on 

rigid rocking structures, wherein the EoMs were linearized about the unstable equilibrium point to 

simplify the overturning problem (Housner 1964). While this approach does not eliminate the 

nonlinearity arising from non-smooth transition between rocking cycles, it reduces the governing EoM 

into a piecewise linear formulation which may provide accurate approximations around the unstable 

equilibrium point (Allen and Duan 1995; Palmeri and Makris 2008). A similar linearization approach, 

outlined by Palmeri and Makris (2008), is adopted here. This investigation is primarily interested in 

the response of large structures which are typically limited to small rocking responses (Acikgoz and 

DeJong 2013). Therefore, Equations 2-3 are linearized about the initial position where 

   1 2
, , ..., , 0, 0, ..., 0, 0

N
u u u   . Linearizing Equation 2 yields:  

              )(11 gMuMuKuCHMuM
g
                     (4) 

Similarly, linearizing Equation 3 yields:  
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               (5) 

After linearization, the equations have become 2
nd

 order coupled linear differential equations and are 

fundamentally different from previously published equations which have ignored the negative stiffness 

during the rocking phase (Meek 1978; Yim and Chopra 1985). However, the linearized equations are 

similar to the equations derived by Psycharis (1983). As noted by Palmeri and Makris (2008), the 

linearization procedure is analogous to a first order approximation of a series around a point; the high 

order nonlinear terms arising from change in position of the structure have vanished in the linearized 

formulation. In fact, these equations can also be derived assuming an inertial reference frame.  

It is possible to express Equations 4 and 5 as a single system of equations in matrix form 

where  
L

M ,  
L

C ,  
L

K and  
L

F represent the linearized system mass, damping, stiffness and forcing 

matrices, and can be directly derived from Equations 4 and 5. System mass, stiffness and damping 

matrices are symmetric although they are not diagonal or positive definite. The time dependent system 

variable  
T

n
uuux ,,...,,

21
 encompasses all the variables in the system:  

        
LLLL

FxKxCxM                              (6) 
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3 MODAL ANALYSIS 

3.1 State-Space Formulation 

To perform modal analysis on the linearized system, the system velocities need to be expressed as 

separate dependent variables. Using the procedure of separation of variables, Equation 6 can be 

expressed in state-space formulation. Setting   0
L

F the homogenous ordinary differential equation 

in state-space form is given by:  

   

        



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











x

x

CMKM

II

x

x

dt

d

LLLL


11

0
                   (7) 

where  I  is the identity matrix which has the same dimensions as  
L

M . After assuming that the 

system has solutions of the form
t

jj

j

ex


 , where 
j

 and 
j

  are the system’s j
th
 eigenvalue and 

eigenvector, substitution of this relation into Equation 7 leads to a typical eigenvalue problem. Using 

this formulation allows uncoupling of the vibration modes of structures where damping is non-

classical and normal decomposition methods are not applicable (Foss, 1958).   

The linearized equations of motion are coupled and this results in complicated expressions. In this 

study, the eigenvalue problem will instead be solved numerically for an example structure, and the 

results will then be generalized.  

3.2 Numerical Example 

The 7-story shear frame shown in Figure 1(right) is considered in this study. The choice of the specific 

shear frame has limited significance in this work as the results are meant to exemplify general trends. 

In order to gain a physical understanding of the problem, an undamped superstructure allowed to rock 

freely will be initially examined. This particular case yields eigenvalues and eigenvectors which have 

either real or imaginary components and therefore the eigenvectors have clear physical meaning. 

Later, a classically damped superstructure with post-tensioning and viscous angular damping is 

considered, and the effect of each element on the eigenvalues of the system is briefly discussed.  
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Figure 2  - Comparison of the eigenvalues of the undamped shear frame during  full contact and  rocking phases. 

The eigenvalues of the first, third and fifth modes during full contact stage are  highlighted with arrows while 

the uplifted first mode and rocking mode are highlighted with markers. 
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3.2.1 Orthogonal Modes of the Undamped Superstructure  

The eigenvalues of the system in the full contact stage and rocking stage are computed numerically 

and are shown in the complex plane in Figure 2. All eigenvalues have a complex conjugate, therefore 

eigenvalues are symmetric about the origin. All of the eigenvalues of the full contact stage (shown 

with marker x) lie on the imaginary axis. This is expected as the superstructure is undamped; during 

full contact, each mode is a simple harmonic with a discrete frequency. 

The eigenvalues of the rocking phase (shown with marker  ) are slightly different. First, for the 

normal modes of motion which lie on the imaginary axis, there is good agreement between the 

eigenvalues of the full contact and rocking phases. The most significant exception is the first mode, 

which lies close to the origin for the full contact phase, due to its low frequency. However, once 

rocking initiates, a decrease is observed in the effective modal mass participating in this mode, 

resulting in an uplifted 1
st
 mode with a much higher frequency (3.2 times higher, shown with the grey 

filled marker ) . Despite its increased frequency, this mode will still be referred to as the uplifted first 

mode due to its mode shape which resembles its full contact counterpart (see Fig 3). The third mode 

eigenvalues are also notably different, although the difference is less drastic than that of the first mode. 

An additional eigenvalue couple (highlighted with grey filled markers ) lying on the real axis, is 

observed during the rocking phase. These eigenvalues are real valued; a positive real eigenvalue 

implies an unstable solution which keeps increasing infinitely and a negative real eigenvalue implies a 

stable solution which decays asymptotically to zero. The presence of these real-valued eigenvalues 

implies a hyperbolic solution. These are readily identified as rocking modes, similar hyperbolic 

solutions have been obtained for the linearized EoM of the rigid rocking block (Housner 1963).  

The eigenvectors associated to the eigenvalues shown in Figure 2 are presented in Figure 3 for the full 

contact phase and the rocking phase. The eigenvectors are scaled to a Euclidean norm of unity. 

Initially, the rotation component of the eigenvectors of the rocking phase is removed, and only the 

translational eigenvector ordinate corresponding to each node is plotted (i.e. j
th
 eigenvector 

j
  is  
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Figure 3 – Comparison of the eigenvectors of the undamped shear frame during full contact and rocking phases  
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plotted against H ). This representation allows direct comparison of the translational component of 

motion during full contact (dashed line) and rocking phases (solid black line). To show the magnitude 

associated with the rotation component of each mode, the complete eigenvectors of the rocking phase 

(including the rotational component) are also shown (solid grey line with marker ). Note that after 

including the rotational component of the eigenvectors, the vertical and horizontal axes no longer 

represent the storey height and eigenvector ordinates precisely. 

Figure 3 shows how the eigenvectors change once rocking is initiated (observe the changes from 

dashed to solid black lines) and how rocking action is coupled with the elastic action (observe the 

changes from solid black to grey lines with markers). Although quite small in some cases, all 

harmonic modes feature a rocking component that counteracts the elastic action. The rocking 

component is particularly strong for the first, second and third mode eigenvectors. It is no surprise that 

these are also the modes where the largest discrepancy is observed between the full contact and 

rocking eigenvalues. This suggests stronger coupling between elasticity and rocking in these modes. In 

particular, for the 3
rd

 mode, this coupling seems to have altered the mode shape significantly. This 

coupling might be a result of the major contribution of these modes to the base overturning moment. 

Finally, note that the rocking mode, shown in the final subfigure (bottom right), features very small 

elastic action and quite large rotation action. This implies that the rocking mode describes the rigid 

body rotation of the structure as a whole.  

Earlier, by classical mode decomposition and a subsequent Laplace transform of the governing linear 

EoM, Psycharis (1983) had demonstrated the presence of hyperbolic and harmonic solutions of the 

MDOF rocking system. Qualitatively, Psycharis (1983) observed the strong interaction between the 

first mode and the rocking mode, and suggested that higher modes are relatively unaffected by the 

rocking motion. The results presented above generally agree with these important trends. However, the 

eigenvectors of the 2
nd

 and 3
rd

 modes clearly show that classical mode decomposition is not valid for 

an uplifting structure, although it might be a useful approximation.  Furthermore, the demonstrated 

eigenvalues and eigenvectors during full contact and rocking phases quantify the interaction of 

elasticity and rocking and allow the reconstruction of response from modal constituents.  

3.2.2 Damped superstructure with free and controlled rocking action 

Rayleigh damping was assigned to the superstructure where a fraction of critical damping of 5% was 

specified for the first and third modes of the structure. Despite the use of proportional  

-6 -4 -2 0 2

-60

-40

-20

0

20

40

60

Re()

Im
(

)

 

 

Full Contact Phase Rocking Phase Rocking Mode Uplifted First Mode

-6 -4 -2 0 2

-50

0

50

 

 

-6 -4 -2 0 2

-50

0

50

 

 

-6 -4 -2 0 2

-50

0

50

 

 

Re()

-6 -4 -2 0 2

-50

0

50

 

 

Re()

Change
c

v

Change
k

pt

c
v
=10

7
Ns/m c

v
=10

7.5
Ns/m

k
pt

=10
8
N/m k

pt
=10

9
N/m

 

Figure 4 –The eigenvalues of a classically damped shear frame (left) allowed to rock freely, (top right) with a 

posttensioning elastic tendon and (bottom right) with an external viscous dissipater.  
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superstructure damping, the system damping matrix ][
L

C  is non-classical due to the presence of 

rocking action (Caughey and O’Kelly, 1965). In Figure 4 (left), the eigenvalues for this system are 

shown in the complex plane.  Due to the introduction of damping, the eigenvalues of the full contact 

phase have a negative real component, which suggests decaying motion, alongside an imaginary 

component, which implies vibration. Just as in the undamped case, there is good agreement between 

the majority of the eigenvalues of full contact and rocking phases. However, as with the undamped 

case, the frequency of first mode (shown with the grey filled marker ) drastically increases once the 

rocking phase is initiated. For the damped superstructure, this increase is accompanied by an increase 

in the effective damping factor, resulting in a high frequency and highly damped first mode response. 

A similar phenomenon was observed for a 2DOF rocking system previously investigated by the 

authors (Acikgoz and DeJong 2012), and in experimental investigations (Evison 1977, Ma 2010). It 

should be noted that the real valued symmetric eigenvalues pertaining to the rocking mode are also 

observed in this figure and are of the same magnitude as in the undamped case. This is expected as the 

eigenvalue of the rocking mode relates closely to the frequency parameter discussed by Housner 

(1963), which is only a function of the scale and rotational inertia of the structure. The rocking mode 

eigenvalue is therefore insensitive to changes in superstructure stiffness and damping.  

The effects of adding a post-tensioned tendon or an external viscous damper were also investigated. 

Eigenvalue results are presented in Figure 4, considering the same damped superstructure. In the top 

right of Figure 4, the rocking phase eigenvalues for different levels of tendon stiffness are presented. 

Similarly, in the bottom right of Figure 4, the rocking phase eigenvalues for different levels of viscous 

angular damping are presented. 

The effect of increasing the tendon stiffness has a significant effect on the rocking mode eigenvalue 

and a small effect on the harmonic mode eigenvalues. An increase in tendon stiffness increases the 

self-centring force. This has a similar effect as an increase in the scale of the structure, which 

decreases the frequency parameter (Acikgoz and DeJong, 2013) and hence causes the real-valued 

rocking eigenvalues to approach the origin. In the extreme, when the stiffness provided by the tendon 

is so high that it provides the bulk of the self-centring stiffness, the rocking mode eigenvalue also 

becomes harmonic and lies on the imaginary axis. On the other hand, external viscous damping affects 

both the rocking and first modes significantly, while its effect on higher modes is relatively small. 

Increasing external viscous damping causes an increase in the magnitude of the eigenvalue of the 

stable component of the rocking mode, while decreasing the unstable component (similar results were 

obtained for the retrofitted rigid block in Dimitrakopoulos and DeJong 2012). Furthermore, due to 

coupling between rocking and elastic action, an increase in the viscous damping results in a significant 

increase in the damping component of the harmonic first mode.  

4 CONCLUSIONS  

This paper aims to better understand the complicated dynamics of flexible rocking structures through 

the use of modal analysis. After the derivation and linearization of novel EoMs describing the 

nonlinear response of a MDOF structure rocking on rigid ground, modal analysis was performed 

numerically for an idealized 7-story shear frame building allowed to uplift. All vibration modes were 

found to interact with the rocking motion, and this interaction was quantified. Rocking was found to 

completely alter the first mode; its eigenfrequency and modal damping were found to increase 

significantly. In general, higher mode eigenvalues did not change drastically upon the initiation of 

rocking, although the eigenvectors for the 2
nd

 and 3
rd

 mode suggest distinct behaviour due to rocking 

action. These trends were observed for both free and controlled rocking systems. Furthermore, it is 

shown that the response of the rocking mode is strongly dependent on the available self-centring force 

and is not significantly affected by superstructure lateral stiffness and damping.  

The important trends observed in this study generally agree with earlier analytical investigations 

(Psycharis, 1983) and more recent computational and experimental studies (Wiebe et al 2012; Widodo 

1995). The analytical approach to modal decomposition revealed the presence of orthogonal modes, 

which quantify the interaction of vibration and rocking, allowing the reconstruction of a more accurate 

linearized response. However, it is still necessary to quantify the importance of nonlinearities on the 
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global response, which can be achieved using the new nonlinear formulations presented in this paper. 

Particularly, it is important to quantify the nonlinearity due to impact. Non-smooth discontinuity of the 

equations of motion at impact may excite different vibration modes, which in turn would influence the 

overall rocking and elastic deformation behaviour.  
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