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ABSTRACT: It is widely recognized that soil-foundation-structure-interaction (SFSI) 

can be a major factor in the seismic response of structures built on soft and deformable 

soils, such as was observed in the Canterbury Earthquakes.  However, difficult numerical 

procedures involved in SFSI studies and a general lack of understanding of constitutive 

models of soils are the main obstacles in conducting SFSI analysis. With the vision of 

encouraging practising engineers to undertake SFSI analysis for important structures, the 

paper presents a fundamental, unified and pragmatic view of SFSI problems, both for 

shallow and deep foundations. The paper presents a method for determining lumped 

stiffness and viscous damping coefficients for deep foundation systems with distributed 

springs and dashpots which can considerably reduce computational and design efforts. 

Subsequently, discussion is given to applicability of constitutive models in non-linear 

SFSI problems: from the simplest discrete spring approach based on deformation theory, 

to complicated elasto-plastic models based on rate independent plastic flow theory.  

1 INTRODUCTION 

The central philosophy of structural design is to transmit loads to soil through a foundation system. 

Though the choice and adequacy of a foundation system is governed by deformation of soil under such 

loads, it is often assumed that such deformation is sufficiently small to produce any recognisable effect 

on the response of a structure. This assumption is valid where structures are built on stiff soil and 

foundation movement is of negligible order. But when structures are built on soft soil, foundation 

movement can have a profound effect on response of structures, particularly during earthquakes. Soft 

soil conditions not only cause a shift in natural vibration period towards the flexible end of spectrum 

and reduce the radiation damping effect, but also large deformations can produce unacceptable levels 

of total and differential settlements as was experienced during the recent Darfield and Christchurch 

earthquakes. (Cubrinovski et al., 2011a,b). 

The interaction between superstructure and foundation can be captured by an integrated analytical 

framework referred to as Soil-Foundation-Structure-Interaction (SFSI) analysis. However, SFSI 

analysis entails rigorous computation, a good understanding of complicated cyclic stress-strain 

behaviour of soil, and is usually carried out for response history analysis (RHA) as opposed to the 

response spectrum analysis, which is a practical method for design. In this context, the paper attempts 

to present a theoretical background and simplified procedures for SFSI analysis which can be practised 

both in conventional design using the response spectrum method, and in RHA for more rigorous 

studies. The paper also presents a simple overview of the principal constitutive relations of sandy 

soils. 

2 SOIL-FOUNDATION-STRUCTURE-INTERACTION: AN ANALYTICAL FRAMEWORK 

In structural dynamics, the underlying concept is every component has three mechanical properties: 

mass, stiffness and damping, which respectively give rise to inertia, restoring and damping forces. 

SFSI analysis can be simply viewed as an extended structural analysis where all the three mechanical 

properties of soil are incorporated in the form of equivalent structural elements. Since soil is a 

continuum, an intuitive choice to idealise soil will be a continuum finite element, in which case, the 

mechanical properties are implicitly incorporated through the finite element formulation. However, the 
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mechanical properties can be also incorporated by much simpler discrete uniaxial springs and dashpots 

with lumped mass. Although finite element modelling enables more accurate representation of 

physical behaviour, it is often found to be practically infeasible. In contrast, the latter approach offers 

computational ease and flexibility and is therefore, often adopted in conventional engineering analysis 

and design. 

2.1 Impedance: condensing dynamical property to kinematic property 

The first step in the simplified SFSI is to idealise the three mechanical properties of a continuum by a 

discrete spring and dashpot, which are collectively termed as the impedance. Using impedances, soil 

behaviour can be incorporated in an analysis without continuum finite elements. The formulas for 

impedances are available in literatures (e.g. Gazetas, 1991; Wolf and Deeks, 2004; ATC-40, 1996) for 

various foundation shapes, embedment, soil profiles and depth of soil boundary, which cover almost 

all practical ranges of concern. When a particular problem does not fit into those cases, a numerical 

procedure is required to derive the impedance as described below. 

 

Figure 1 A finite element model to derive impedance 

Consider a rigid massless plate overlying a discretized bounded volume of elastic and isotropic soil 

(also referred to as an elastic half-space) as shown in Figure 1. The plate is subjected to a transverse 

harmonic load of                 with frequency  . The plate being rigid will not undergo any 

flexural deformation and displacement at nodes underneath the plate will be equal. In order to model 

the soil with semi-infinite lateral and vertical extents, supports or boundary conditions are assigned at 

a sufficient distance away from the plate so that its displacement is not significantly affected. The 

governing equation of motion is given by Equation 1 below. The vector     is the consistent nodal 

load vector obtained from uniform stress    where,        ;   = area of the plate. It is to be noted 

that rigidity of the plate allows consideration of uniform stress   . 

                                    (1) 

where,     = mass matrix;     = viscous damping matrix;     = stiffness matrix; and                = 

vectors of nodal acceleration, velocity and displacement, respectively. The steady state solution of 

Equation 1 is given as:                . Now, Equation 1 can be rewritten as Equation 2 after 

substituting                in Equation 1. 

           (2) 

where,                     is also known as the impedance matrix, or simply, the impedance. 

The amplitude     will be complex in nature. If the amplitude at the centre of the plate can be 

expressed as           (   and    are real and imaginary coefficients), then a scalar impedance 

can be defined as              , where    is the stiffness of a lumped or discrete spring and    is the 

viscous damping coefficient of a discrete dashpot; the spring and dashpot are also collectively termed 

as lumped parameters. Hence, following the above procedure, dynamical properties of a continuum are 

condensed in two quasi kinematic properties. Both    and    depend on the size and shape of the plate, 

soil properties and the excitation frequency  . For numerical analysis, solution of Equation 1 under 

sinusoidal loading                can be considered. The solution is of the form   
            where                    . Table 1 provides a set of formulas for obtaining 
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impedances of a square pad footing on a homogeneous half-space, taken from Gazetas (1991) for 

vertical, horizontal and rocking modes of vibration. The dimensionless parameter       controls the 

functions             and             , which are the dynamic modification factors of the respective 

terms; the dynamical response increases with this parameter (since zero value is equivalent to static 

behaviour as     and the solution of Equation 1 is simply         ). Once the impedances are 

derived either numerically or from the available analytical solutions, SSI analysis is immensely 

simplified as exemplified in the next section. 

Table 1: Formulas for impedances of a square pad foundation on a homogeneous half-space, after Gazetas 
(1991) 

List of symbols: 

  = foundation contact area;   = foundation width;   = shear modulus of soil;    = foundation contact 

second moment of area;   = foundation length;     = Lysmer’s analog wave velocity;    = shear wave 

velocity of soil;          = viscous damping coefficients corresponding to horizontal, vertical and 

rocking mode of vibrations denoted by the respective subscripts;   
    

    
  =  radiation damping 

coefficients;             = dynamic stiffness coefficient functions available in chart form;             

= radiation damping coefficient functions, also available in chart form;          =  dynamic stiffness; 

  = bulk density of soil;   = Poisson’s ratio;   = excitation frequency;    =  hysteretic damping 

coefficient as a fraction of critical damping. 

     
       

   

      
    

   
      

   
    

 

 
   

  

  
     

   

   
    

 

 
   

  

  
      

      

   
    

 

 
   

  

  
  

  
            

 

 
   

  

  
    

           
 

 
   

  

  
    

           
 

 
   

  

  
  

     
  

   

 
        

  
   

 
        

  
   

 
   

2.2 A simplest case of SFSI: a single storey building with shallow foundation 

In absence of SFSI, mass of a single degree of freedom (SDOF) system subjected to support 

acceleration experiences a total acceleration of         (    is the support acceleration and     is the 

acceleration relative to the support) as shown in Figure 2c. This gives rise to the inertia force of 

           acting at center of mass at height   above the foundation level. Hence, the foundation is 

subjected to a horizontal force of            and an overturning moment of            . If the soil 

is considered to be deformable, then it will undergo translation,    and rotation   which become 

additional unknowns. Hence, all SFSI models are in essence multi-degree-of-freedom (MDOF) 

systems. The mass of the superstructure now undergoes a total translation of            . As 

shown in the figure, the semi-infinite soil medium is represented by two uncoupled translational 

(     ) and rotational (     ) impedances which can be obtained from Table 1. The equation of 

motion incorporating SSI is given by Equation 3 below in terms of variables             and 

     . This transformation renders the mass matrix diagonal for numerical convenience. 

 

    
    
       

  

   
   

  
   

         
           

              
  

   
   

  
   

         
           

             
 
  

  

  

 
 

   

    
    
       

        

(3) 

where,   is the mass moment of inertia; for a rectangular plate of dimensions   (along x-axis) and   

(along y-axis),   about y-axis is        and about x-axis is       , where   is the mass of the 
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plate; and    =       is the influence vector of ground acceleration. It can be observed from 

Equation 3 that mode shapes are coupled and the damping matrix is non-proportional.  

 

Figure 2 A simplest SSI model: a single storey building with shallow foundation 

In the mode superposition method, such as the response spectrum method, off-diagonal terms of the 

damping matrix are neglected. The approximate fundamental frequency can be determined by the 

Dunkerley’s method as shown in Equation 4 below in absence of a free vibration analysis. 

 

    
  

  

  

 
  

     

 
     

      
 
 (4) 

This equation is a useful approximation of the fundamental frequency of the system. If it is compared 

with that of the fixed base system, then the additional flexibility incurred owing to the soil 

deformability in terms of a shift in frequency can be readily assessed. Subsequently, by judging the 

shift in frequency, a decision can be made whether to carry out a more rigorous SSI analysis. This 

equation is a useful approximation of the fundamental frequency of the system. If it is compared with 

that of the fixed base system, then the additional flexibility incurred owing to the soil deformability in 

terms of a shift in frequency can be readily assessed. Subsequently, by judging the shift in frequency, a 

decision can be made whether to carry out a more rigorous SSI analysis.  

For use in response spectrum analysis, the equivalent modal damping ratio (  ) is given by Equation 5 

below. 

       
                 (5) 

where,      is the mass normalised mode shape vector of mode  ;      is the diagonal matrix 

comprising radiation and hysteretic damping coefficients of soil;    is the constant hysteretic damping 

ratio of the structure which is generally considered as either 5% or 2% of the critical for reinforced 

concrete or steel structures, respectively. In the given example      can be derived by putting      

in the damping matrix of Equation 3. Equation 5 shows that the effective damping depends on the 

shape of vibration which must be considered while evaluating effective damping; for example, the 

radiation damping is not as effective as it appears to be in the rocking mode of vibration (Gazetas, 

1991).  

As generally,                        only the inertia force due to    can be considered, which 

allows the effective stiffness (     ) to be derived as below, following the static condensation 

procedure: 

 

    
 

 

  
 

 

  
 

  

  
 (6) 

Hence the effective stiffness of the system becomes less than the minimum of the stiffnesses of the 

individual springs when soil flexibility is considered. This has an important implication, as the 

flexibility increases with the square of the height of the structure, in design of tall and slender 

displacement sensitive structures like elevated water tanks, bridge piers, stacks and chimneys, not only 
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under earthquake but also under wind induced vibrations. 

2.3 Governing equation of motion for generalised system 

Although the simple SFSI model of Figure 2a reveals some critical design issues, but is not adequate 

for idealisation of an embedded foundation system. A general arrangement of a MDOF system with 

deep foundation is shown in Figure 3. Soil impedance is represented by independent springs and 

dashpots. A basic difference in SFSI analysis between surficial or shallow foundation and embedded 

or deep foundation is the spatial variation of ground acceleration along the depth of foundation, which 

renders the latter as a multiple support excitation problem. In Figure 3a, non-uniformity in ground 

acceleration is shown by far field response of soil column in a shear beam deformation mode under a 

vertically propagating horizontal shear (SH) wave.  The only change that takes place in the governing 

equation of motion is the left hand side terms of Equation 3. In Figure 3, the superstructure is 

designated by a DOF and the foundation component excluding the impedances is designated by b 

DOF. It is assumed a-priori that the far-field ground acceleration is known at b DOF via a separate 

ground response analysis, which is represented by a vector term         
 instead of the scalar term     

of Equation 3. The vector     in Equation 3 expands to a matrix quantity          which conceptually 

describes the influence of foundation displacements on the global structure. The complete expression 

of     is available in Clough and Penzien (1993). 

 

Pending a rigorous ground response analysis, it is often assumed that the ground acceleration is 

spatially uniform to the depth of interest. The spatial variation can approach uniformity only when the 

wavelengths of the prinicipal components of a vertically propagating SH wave is much greater than 

the depth of the foundation. When the ground acceleration is considered uniform, then it implies a 

rigid body displacement of the structure, and thus, every DOF experiences equal acceleration. This is 

equivalent to having a vector     of unity as in Equation 3.  Thus, with this assumption ground 

acceleration can be imposed in the sameway as that of the shallow foundations. 

2.4 A procedure for lumping distributed impedances of deep foundations 

It is computationally advantageous if the distributed impedance of a deep foundation can be lumped 

like a shallow foundation. Such a procedure is described below for both the pile and the pier (cassion) 

type foundations. It is well established that the vertical strength is derived from skin friction and end 

bearing mechanisms, indicated by t-z and q-w springs, respectively in Figure 3b; and lateral strength is 

Figure 3 Lumped SFSI model for deep foundation 
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generated by a mechanism represented as p-y springs. The force-displacement relation of these springs 

is non-linear and the methods for deriving these non-linear functions are available, for example, in the 

text by Reese et al. (2006). The stiffness thus derived is the static stiffness; the dynamic effect can be 

included by reducing the stiffness using some frequency dependent factors available in Gazetas and 

Dobry (1984a). However, such factors are usually close to unity for a wide range of frequency and can 

be neglected for practical purposes. It is more important to reduce the stiffness for group effect in case 

of pile foundation. Simplified closed form expressions of radiation damping coefficients 

corresponding to each of the three deformation mechanisms in Figure 3 are available in Gazetas and 

Dobry (1984b). Like stiffness, the radiation damping coefficients should be also reduced to 

accommodate group effect. The procedure described here is based on linear static analysis. Hence, 

instead of nonlinear springs with variable stiffness at different displacements, a constant stiffness 

should be used. Therefore, the nonlinear force-deformation curve should be idealised as elastic and 

perfectly plastic by assuming the area under the actual curve is same as the idealised one. First, a 

convenient generalised DOF should be located, which is usually chosen at the centre of a pile group or 

a pier foundation, as shown in Figure 3b. The quasi-static equilibrium condition of the foundation 

system with respect to the generalised DOF can be expressed by Equation 7 below. 

 

         

         

         

  
 
 
 
   

  

  

  

  (7) 

where,       are the displacements;          are the forces applied along the directions indicated by 

the subscripts; and      represent the stiffness coefficients. The stiffness matrix can be determined by 

applying arbitrary forces          in turn while restraining the DOF at the other two directions by 

assigning supports. The corresponding deflected shapes (        ) will be also known if the nodal 

displacements are divided by the displacement at the generalised DOF. Now the generalised mass 

matrix and radiation damping matrix can be calculated using well known formulas, as shown in 

Equation 8. 

                             (8) 

where,     and     are the elements of the mass and damping matrix; subscripts     corresponds to 

directions      ;   is the length of the foundation;    is the mass of the foundation per unit length;    is 

the coefficient of radiation and hysteretic damping divided by the average length of the foundation 

elements on either side of a node. Thus, a deep foundation system with distributed springs and 

dashpots is lumped into a coupled mass, spring and dashpot system. Such lumped and coupled 

impedance for pile foundation is available in the text by Poulos and Davis (1980) which may relieve 

this computation. The procedure described here is general that can be applied for various deep 

foundation systems with different geometry and also for stratified soil deposits. Once the 

displacements at the generalised DOF are known from a global analysis, the foundation forces can be 

determined by applying these displacements in the analysis model of the foundation that was used to 

generate the lumped impedance. If desired, nonlinear static analysis based on foundation forces can be 

performed to check the serviceability criterion which more than often governs the design of 

foundations under lateral loads. 

3 CONSTITUTIVE MODELLING 

The methodology discussed in the previous sections is based on linear behaviour of soils and structure, 

but is equally applicable for nonlinear RHA given that the governing equation of motion in structural 

dynamics is expressed in incremental (differential) form. The differential form of the governing 

equation of motion in Equation 1 can be written as Equation 9, where the term        is written as 
           and differentiated using the method of partial differentiation. 

                   
   
  

   
   
   

          (9) 
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In nonlinear RHA, equilibrium is enforced in ‘incremental’ sense rather than in ‘total’ sense. The 

restoring force      is given as a nonlinear function of displacement and velocity in general sense. The 

framing of the nonlinear function          is referred to as so called ‘constitutive modelling’, and the 

function, as the so called ‘constitutive model’. In a majority of constitutive models, other than the 

visco-plasticity models, the restoring force is considered to be independent of velocity; hence, 

            . In nonlinear analysis,        is a function of  ; if         is a constant, then       

is a linear function of  , and hence the terms ‘linear’ and ‘nonlinear’ arise. 

There are two approaches to constitutive modelling. In the first approach, the restoring force is 
expressed by closed form analytical functions of displacement satisfying some experimentally 
observed key events in the plastic behaviour of the material concerned. This approach is based on the 
deformation or total strain theory of plasticity, where a direct nonlinear stress-strain relation can be 
framed because no distinction is made between total and elastic strains or displacements.  In the 
second approach, which is based on the plastic flow theory, the stress-strain relation can be only 
expressed in non-integrable differential form, but such differential form depicts merely a change in the 
state of model in an infinitesimal time interval and does not depict rate over time. Another distinction 
is that the total strain comprises elastic and plastic strains, and the stress increment is linearly related 
to the elastic strain increment. 

3.1 Deformation theory 

It is well known that both strength and stiffness of sandy soils depend on effective pressure. While the 

strength is governed by Mohr-Coulomb’s failure criterion, stiffness is governed by the power law: 

           , where   is the initial shear modulus at effective pressure  ;    is the initial shear 

modulus known at some reference pressure   ;   is usually between 0.5 and 1. A stress ( )-strain ( ) 

relation can be thus written as         , and the tangent modulus (  ) is expressed as          

i.e. by considering   = constant. Drained (  = constant) shear tests, such as triaxial, on different 

specimens with different void ratios have commonly shown monotonic  -  response with negative 

curvature;    approaching zero, and   approaching a maximum threshold value (    ), both occurring 

at a large strain.  This is the critical state for the sandy soils. Mathematical restrictions are thus:      

and   
    (where the prime denotes derivative with respect to  ). Several continuous functions can 

be framed with these governing differential equations, where the boundary or the critical state 

conditions are:            and             ; and the initial condition is        . A 

simple and intuitive choice of function for    can be an exponentially decaying function:    
              . Some examples of such functions are given from Equation 10 to 13 below. 

Equation 10 is obtained by integrating the aforementioned exponential function; Equation 11 is 

obtained from Boulanger et al. (2003), which is due to Prager (Chakrabarty, 2006) and also provides 

an excellent methodology for deep foundation analysis in liquefiable strata; Equation 12 is adopted 

from Ahn and Gould (1992); and Equation 13 is adopted from Hardin and Drnevich (1972). 
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where,              and is often referred to as the reference strain. This list is not complete and 
there are several such functions, (see Stewart et al., 2008 for a comprehensive review), but whatever 
be the form of function, it is always within the aforementioned mathematical restrictions. 
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3.2 Rate-independent plastic flow theory 

The deformation theory discussed in the previous section is only applicable for uniaxial cases. In a 

three dimensional stress problem, there are six independent stresses and strains, and the plastic flow 

theory attempts to derive a unique relation among their incremental quantities and entails several 

assumptions. A review of plastic flow theory based models is beyond the scope of the paper. Some 

successful models based on this theory are those of Bardet (1985); Wang et al. (1990); Cubrinovski 

and Ishihara (1998a); Yang et al. (2003); Dafalias and Manzari (2004); Yang and Elgamal (2008); 

Zhang and Wang (2012), amongst others. However, almost all the plastic flow theories for sandy soils 

require mathematical description (constitutive relations) of three main physical phenomena which are 

discussed as follows. 

The first constitutive relation is a monotonically increasing shear stress – plastic shear strain relation 

which satisfies the same mathematical restrictions of a stress-strain relation of the deformation theory. 

Such a mathematical expression is often referred to as a ‘hardening’ function because    
        and thus      as long as      (here,   is the plastic strain). Hence, shear stress 

continues to increase or the response ‘hardens’ with accumulation of plastic strain. This curve is 

experimentally derived and a convenient equation is chosen by trial and error that gives the closest fit. 

As the stress-strain relation of sand depends on the effective pressure, hardening functions are usually 

described for a constant effective pressure. 

In the deformation theory, it is assumed that effective pressure remains constant. However, soils have 

a tendency to contract or expand even when directly sheared and consequently, there is a change in the 

effective pressure. Let the total volumetric strain be denoted as   and shear induced volumetric strain 

(the plastic volumetric strain) as   . The relation between the shear induced volumetric strain and the 

shear strain is written simply by using the rate formula:                 , or,         where 

           is known as the dilatancy, which is a function of stress ratio    .  The expression of 

dilatancy for sandy soils is usually Rowe’s formula (Equation 14)  

       
          

           
 (14) 

where,   is the angle of dilation;         ;    corresponds to the stress ratio when    ; from 

Equation 14, one can note that      . Now, the change in effective pressure   can be written as 

              , where    is the elastic bulk modulus. As a result of the dilatancy, the effective 

pressure and the void ratio (hence, the relative density) change with the shear stress, which 

subsequently modify the elastic modulus and the hardening function. Consequently, the stress-

dilatancy behaviour has the most significant impact on model performance and is least understood, 

particularly under cyclic loading. The majority of the models differ in this aspect and further research 

is required in this area.  

In drained tests which are slow tests, specimens are allowed to consolidate at a constant pressure so 

that       . However, earthquakes are extremely short duration phenomena and do not allow 

sufficient time for soils to consolidate. Hence, typically      and the effective pressure reduces as 

proportional to the dilatancy. This is equivalent to a change in insitu state of soil to a relatively loose 

state, which is uniquely defined by its current void ratio and effective pressure. When sandy soils are 

sheared to a point of failure at a large strain, they attain unique combinations of void ratio and 

effective pressure. This unique function of void ratio and effective pressure is known as the Steady 

State Line (SSL) and is usually expressed in the form         (    is the void ratio along the SSL). 

The relative state of the sand with respect to the SSL is known as the state parameter. The simplest 

definition of a state parameter is:       (Been and Jefferies, 1985); there are also other measures of 

the state parameter (e.g. Cubrinovski and Ishihara, 1998b; Wang et al., 2002). The elastic modulus, the 

parameters of the hardening function and the dilatancy depend on the state parameter. Thus, the 

dependence of the overall constitutive behaviour of sands on the current confining pressures and void 

ratios (hence, the relative densities) can be mathematically modelled via the state parameter. Some 

examples of models where the state parameter is incorporated are those of Cubrinovski and Ishihara 

(1998a) and Dafalias and Manzari (2004), amongst others. 
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4 CONCLUSION 

The paper demonstrates the importance of soil-foundation-structure-interaction (SFSI) for tall and 

slender structures, and presents practical SFSI analysis procedures using impedance functions for 

shallow and deep foundations. A detailed SFSI analysis using finite continuum elements with 

plasticity based constitutive models is the most rigorous approach, but the complexity becomes a 

deterrent for practical application. SFSI analysis of structures of realistic proportions and complexity 

is often still based on discrete springs and dashpots, which produces results within an acceptable range 

of accuracy required for design. Simplified SSI is practically suitable and more convenient than a 

detailed finite element model to carry out several parametric variations for optimising a design.  
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