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ABSTRACT: Having a quick but reliable insight into the likelihood of damage to 

bridges immediately after an earthquake is an important concern especially in the 

earthquake prone countries such as New Zealand for ensuring emergency transportation 

network operations. A set of primary indicators necessary to perform damage likelihood 

assessment are ground motion parameters such as peak ground acceleration (PGA) at 

each bridge site. Organizations, such as GNS in New Zealand, record these parameters 

using distributed arrays of sensors. The challenge is that those sensors are not installed 

at, or close to, bridge sites and so bridge site specific data are not readily available. This 

study proposes a method to predict ground motion parameters for each bridge site based 

on remote seismic array recordings.  Because of the existing abundant source of data 

related to two recent strong earthquakes that occurred in 2010 and 2011 and their 

aftershocks, the city of Christchurch is considered to develop and examine the method. 

Artificial neural networks have been considered for this research. Accelerations recorded 

by the GeoNet seismic array were considered to develop a functional relationship 

enabling the prediction of PGAs. 

1 INTRODUCTION 

Road networks are one of the most important parts of each modern society’s facilities. They link all 

different locations in a human society. Consequently, any damage sustained by one or more links in a 

network due to a natural disaster such as an earthquake, will most likely result in some undesirable 

repercussions. Furthermore, one of the most important parts of each transportation network, whose 

failure will have great impact on the whole system, are definitely bridges. Therefore, these structures 

deserve special consideration in natural hazard assessment studies, especially in countries that are 

strongly prone to damaging earthquakes such as New Zealand. One of the most important issues and 

research challenges is to develop quick and reliable methodologies to assess the condition and damage 

to bridge structures after an earthquake. 

For any post-earthquake emergency response, a reliable insight into the structural integrity of bridges 

in a transportation network is required. In order to have such a reliable insight and performing an 

adequate risk evaluation, it is important at first to know the ground motion metrics at the base of each 

bridge experienced during the earthquake. One of the most important ground seismic parameters 

which can help structural engineers to evaluate structural integrity of a bridge after an earthquake is 

peak ground acceleration (PGA). However, currently only a very limited number of important bridges 

are instrumented to collect such data even in places where structural monitoring has made more 

decisive strides into practice. In New Zealand, despite the obvious seismic hazard risks, this number 

can be assumed as nil for all practical considerations. Hence, the aim of this paper is to propose an 

artificial neural network (ANN) based approach to predict this key seismic parameter at the bridge site 



immediately after an earthquake by using the data recorded by an array of free field strong motion 

recorders located at some distance from the bridge. 

2 DESCRIPTION OF THE SENSOR ARRAYS 

GeoNet is a project to build and operate a modern geological hazard monitoring system in New 

Zealand. It comprises a network of geophysical instruments, automated software applications and 

skilled staff to detect, analyse and respond to natural hazards such as earthquakes. The GeoNet data 

centre (www.geonet.org.nz) is responsible for collecting and processing the data recorded by strong-

motion accelerographs which are located in major centres of population and near significant faults. 

New Zealand’s current strong motion network consists of the national strong ground motion network 

and the Canterbury regional strong motion network which are instrumented respectively with 

Kinemetrics Etna high dynamic range strong motion accelerographs and CSI CUSP-3 strong motion 

accelerographs. 

The data used in this research containing information of accelerographs as well as accelerations and 

other parameters of the earthquakes and aftershocks are all collected from GeoNet. 

3 ARTIFICIAL NEURAL NETWORKS 

An efficient way of solving and understanding complicated problems, relationships and systems is 

decomposing them into simpler elements which are easier to understand. An approach which makes 

this possible is using networks. A network is made of a number of computational units, which are 

called nodes, and connections between nodes. The nodes receive inputs to process and generate 

outputs. 

AANs are a kind of network that considers the nodes made of artificial neurons which are inspired by 

the natural neurons in human brain. ANNs are simplified models of the human brain and have been 

widely and successfully used in different fields of science and engineering to solve different types of 

problems such as pattern recognition, prediction and interpolation. The basic concept of modelling the 

activity of the human brain numerically has a history of over half a century and was first presented by 

McCulloch and Pitts (1943). The starting point of developing ANN appeared in Hopfield (1982) and 

abundant applications of ANNs can be found in the recent 20 years. 

Figure 1 shows the way an artificial neuron generates an output from received inputs. The numerical 

inputs    are multiplied by the related numerical weights   , while they are being transmitted through 

the connections. A summation then will be imposed on all weighted inputs      and added to the 

numerical bias   to be used as an argument for transfer function   which generates the output 

            . The bias is in fact a weight which multiplies a constant input of 1. There are three 

types of transfer functions which are most commonly used. These functions are the step (or hard-

limit), the linear and the logistic (or sigmoid); they are shown in Figure 2. 

 

Figure 1. An artificial neuron 



 

Figure 2. Commonly used transfer functions: step (left), linear (middle) and logistic (right). 

One of the most important characteristics of ANNs which makes them suitable for solving a wide 

range of problems is the ability of being trained. All of the aforesaid numerical weights and biases are 

adjustable parameters of the neuron which are tuned during a procedure called training to make the 

network fit for doing a particular job. The common structure of ANN consists of neurons which are 

organized in layers and each neuron of a layer is connected to all the neurons in the previous and next 

layer. There is one input, one output and one or more hidden layers in each ANN. 

There are several examples in the literature that have used ANNs for earthquake related research, such 

as earthquake forecasting (Alves, 2006) and seismic structural damage prediction (de Lautour & 

Omenzetter, 2009). Notably, Kerh et al. (2011) used an ANN to estimate PGA at selected checking 

stations and then distributed the estimated PGAs from nearby stations to bridge sites using weighting 

factors. However, the objective of this research is to propose an ANN-based approach that makes it 

possible to predict directly the PGA of any arbitrary point after an earthquake using PGAs recorded 

by accelerographs. 

4 METHODOLOGY 

In this research, an ANN model is developed using the maximum horizontal PGAs related to 21 

February 2011 M6.34 Christchurch earthquake and its aftershocks which were recorded by the 

accelerographs installed over Christchurch. 

Google Maps (http://maps.google.com) consider as the centre of the city of Christchurch the 

following coordinates: Latitude=-43.5° and Longitude=172.6°. With respect to these coordinates, all 

of the recording stations which are located within a radius of 5 km from the centre of the city were 

considered. However, amongst the 39 stations located in that area, just six stations were operational 

and had recorded accurate and reliable data that could be used. Figure 3 and Table 1 show the 

locations and additional information of these six stations. By using the measuring tool in Google 

Maps, the distances between all the six recording stations were calculated and are shown in Table 2. 

For a total of six recording stations considered, only maximum horizontal PGAs were selected which 

were related to events of a magnitude greater or equal to 5.0 to prevent probable unwanted noise. The 

selected data came from a period of time shown in Table 3, starting from the main shock of 21
st
 

February 2011 at 23:51:42 and ending with an aftershock on 6
th
 January 2012 at 12:27:44. The 

number of records available is 15. 

 

Figure 3. Location of accelerographs in Christchurch 



Table 1. Information about accelerographs in Christchurch 

Number Name Abbreviation Latitude (°) Longitude (°) 

1 ChCh Botanic Gardens CBGS -43.53101 

 

172.61975 

 

2 ChCh Hospital CHHC -43.535929 

 

172.627523 

 

3 ChCh Papanui High School PPHS -43.49451 

 

172.60679 

 

4 ChCh Resthaven REHS -43.52361 

 

172.63502 

 

5 Riccarton High School RHSC -43.536172 

 

172.564404 

 

6 Styx Mill Transfer Station SMTC -43.4675293 

 

172.6138611 

 

 

Table 2. Distances between accelerographs (km) 

 CBGS CHHC PPHS REHS RHSC SMTC 

CBGS 0 0.832 4.195 1.482 4.503 7.082 

CHHC 0.832 0 4.905 1.498 5.094 7.694 

PPHS 4.195 4.905 0 3.960 5.763 3.057 

REHS 1.482 1.498 3.960 0 5.868 6.473 

RHSC 4.503 5.094 5.763 5.868 0 8.621 

SMTC 7.082 7.694 3.057 6.473 8.621 0 

 

Table 3. Date, time and magnitude of earthquake and aftershocks (in order of increasing 
magnitude) 

Earthquake Date 

yyyy-mm-dd 

Time 

(UT) 

hh:mm:ss 

Magnitude 

2012-01-01 12:27:44 5.00 

2012-01-06 1:20:58 5.03 

2011-07-21 17:39:32 5.09 

2011-12-23 17:37:30 5.10 

2011-04-16 5:49:22 5.30 

2011-12-23 1:06:25 5.33 

2011-04-16 5:49:19 5.34 

2011-12-31 0:43:00 5.34 

2012-01-02 5:59:00 5.36 

2011-06-21 10:34:23 5.44 

2011-06-05 21:09:55 5.54 

2011-06-13 1:01:00 5.63 

2011-12-23 0:58:38 5.80 

2011-12-23 2:18:03 6.00 

2011-02-21 23:51:42 6.34 



The objective of this research is to develop an ANN to predict PGA (as the output) at any desired 

point, particularly a bridge site, located in the circular domain of study within the radius of 5 km from 

the centre of Christchurch. There are, however, no recording stations installed right at the bridge sites 

that would supply the relevant data to be used for training the ANN. To overcome this challenge, the 

following approach is proposed and used in this research to obtain suitable inputs and outputs for 

ANN development. 

 A single station is excluded and its PGAs set aside for evaluation of the network after it has 

been developed. This station is treated as if it were located at a bridge site where PGA 

prediction is desired. 

 PGAs recorded at the remaining five stations and distances between them are used as the data 

to develop an ANN, i.e. to train, validate and test it. 

This procedure results in a 10×75 input matrix (15×5=75 samples of 2×5=10 elements) for 

developing the ANN. 

To prevent the existence of extreme values that can considerably affect the accuracy of the ANN, as 

observed in this study, all the PGAs are normalized using the following equation (Yeh, 2009): 

     
             

               
                                                                                                                        (1) 

where      is the normalized PGA,      is the original PGA,        is the minimum PGA in the 

data set, and        is the maximum PGA in the data set. After normalization, all of the PGAs in 

input and output data are within the range of 0 to 1. 

Two feed-forward artificial neural networks are created in this study. Each network used a sigmoid 

transfer function in its one hidden layer and a linear transfer function in the output layer. The hidden 

layer contains eight neurons and the networks are trained with the Levenberg-Marquardt 

backpropagation algorithm. Figure 4 shows the diagram of the networks used in this study. 

 

Figure 4. Diagram of the ANNs used 

5 RESULTS 

5.1 Training, validating and testing the networks 

Two examples of artificial neural networks, ANN1 and ANN6, are created by excluding Station 1 and 

Station 6, respectively. The portions of the data used for training, validation and testing were in each 

case 70%, 15% and 15%, respectively, i.e. 53, 11 and 11 out of 75 samples. Training data are used to 

adjust the weights in the network and testing data are used to provide an independent measure of 

network performance after training. In this research, ANN testing is different from ANN evaluation as 

the latter uses data from a station entirely missing from the data used to develop the ANN. Validation 

data are used to stop training if the accuracy over the training data increases while the accuracy over 

the validation data stays the same or decreases for six consecutive epochs (iterations). This is to avoid 

overfitting. 

After training the networks, mean squared errors (MSEs) for training, validation and testing were  , 

0.004 and 0.001 for ANN1, and 0.001, 0.001 and 0.001 for ANN6, respectively. These are all small 

values close to zero and show very small errors between the targets and actual ANN outputs. Figure 5 

shows MSEs for training, validation and testing versus epochs for both networks. As can be seen, the 

best validation performance for ANN1occurs at epoch 72, where the training is stopped, and the error 



of the validation remains constant for the subsequent six epochs. The best validation performance for 

ANN6 occurs at epoch 3 and the training is stopped at epoch 9 after the validation error has not 

decreased during the next six iterations. The regression coefficient (R) values for training, validation 

and testing were ≈1, 0.94 and 0.94 for ANN1, and 0.99, 0.97 and 0.96 for ANN6, respectively. They 

are all close to 1 showing a very close correlation between outputs and targets. Figure 6 and Figure 7 

demonstrate the R values for training, validation and testing, and all three combined for ANN1 and 

ANN6, respectively. 

 

 

Figure 5. MSEs for training, validation and testing: ANN1 (left) and ANN6 (right). 

 

Figure 6. Regression of ANN1 outputs on training, validation, testing and all data 



 

Figure 7. Regression of ANN6 outputs on training, validation, testing and all data 

5.2 Evaluating the networks 

The final goal of this research is to have an ANN which will be able to predict the PGAs at any 

arbitrary bridge site located in the domain of study, if it is given an input vector of PGAs recorded by 

the stations and associated distances between each recording station and the desired bridge. Therefore, 

it is necessary to evaluate the capability of the approach to predict the PGA at a point which has the 

certain value of PGA but had not been included in the process of developing the network. For this 

reason, the following evaluation of ANN’s fit-for-purpose is performed: The station which has not 

been used in the process of generating the network is used to provide target PGAs for the ANN to 

predict. In the present study, those stations are Station 1 (CBGS) and Station 6 (SMTC) for ANN1 

and ANN6, respectively.  

Networks ANN1 and ANN2 were asked to predict the values of 15 PGAs at their respective 

evaluation station. The MSEs for such evaluations were 0.003 and 0.001 for ANN1 and ANN6, 

respectively, which are small values close to zero, and the R values were 0.97 and 0.90 which are 

close to 1. Figure 8 demonstrates the match between target and ANN-predicted values for evaluating 

ANN1 and ANN6. These results confirm the feasibility of the proposed approach to predict reliably 

PGA at an arbitrary point in the domain of study.  

 



 

Figure 8. Regression of ANNs outputs on evaluation data: ANN1 (left) and ANN6 (right). 

6 CONCLUSIONS AND FUTURE WORK 

An ANN based approach has been proposed in this study to predict PGAs at any arbitrary point (e.g. 

bridge site) immediately after an earthquake, based on PGAs recorded by a distributed array of 

sensors. An area of study was considered within 5 km from the centre of Christchurch to develop the 

method. The only additional parameter considered except the recorded PGAs was the distance 

between the recording station and the target point. The results were promising and showed very small 

errors. 

Based on this research, it is planned in the future to consider wider areas and more parameters such as 

seismic soil class, hypocentral depth and epicentral distance to reach a general approach that could be 

used for the whole city or large parts of the city. It is also planned to expand the method for predicting 

other ground-motion parameters such as peak ground velocity (PGV) and peak ground displacement 

(PGD). In addition, to use the predicted seismic parameters at the bridge site for the quick post-

earthquake damage assessment, it is intended to develop a method using a simplified structural model 

of the bridge and estimated seismic parameters to compare with the design criteria for damage 

assessment. 
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