Effect of lateral stress on the liquefaction resistance of SCP-improved sandy soils

R.P. Orense
Department. of Civil Engineering, University of Auckland

K. Harada & J. Mukai
Fudo Tetra Corporation, Tokyo, Japan

K. Ishihara
Chuo University, Tokyo, Japan

ABSTRACT: When the sand compaction pile (SCP) method is implemented to improve loose deposits of sandy soils, its effect is evaluated generally in terms of increase in density which is beneficial for reducing the liquefaction potential of the deposits during earthquakes. Additional advantage can be expected to occur due to a concurrent increase in lateral stress. When the resistance to liquefaction is evaluated on the basis of SPT N-value or CPT q_c-value, the increased resistance to penetration due to the sand compaction has been interpreted conventionally as being associated mainly with the increase in density. Therefore, in order to properly evaluate the effectiveness of ground improvement in compacted soils, it is necessary to quantify the effect of lateral stresses on the penetration resistance and liquefaction strength. In this paper, charts incorporating the effect of various lateral stress ratios proposed earlier by the authors are used to quantitatively analyze the contributions of the increased lateral stress and increased penetration resistance on the resulting liquefaction resistance. Results indicate that if the increase in penetration resistance due to SCP implementation is larger, the effect of increased lateral stress becomes smaller and such trend is more pronounced in denser deposits.

1 **INTRODUCTION**

The effectiveness of compaction methods as ground improvement technique is usually evaluated through penetration resistances measured in-between sand piles before and after improvement in terms of N–values in standard penetration testing (SPT) or q_c–values in cone penetration testing (CPT). However, it is known that in addition to the increase in penetration resistance due to pile installation, there is also an increase in lateral stress in the ground. Most liquefaction potential evaluation procedures formulated for natural or reclaimed deposits make use of relations between liquefaction resistance and penetration resistance (N–value or q_c value) assuming that the lateral stress σ'_{h} in the sand deposit would be approximately equal to 0.5 times the vertical effective stress σ'_v, i.e., the K_C–value defined as $K_C = \sigma'_{h}/\sigma'_v$ is 0.5. However, for ground improved by compaction methods where $K_C > 0.5$, a different liquefaction resistance curve as illustrated in Fig. 1 can be defined which would include the effect of both increased penetration resistance and increased lateral stress. In the figure, N_i and q_{c1} are the SPT N–values and CPT q_c–values, respectively, normalized to an overburden pressure of 1 kg/cm², while R is the liquefaction resistance of the ground.

In current design practice, however, only the effect of increased density on liquefaction resistance is incorporated. In order to fully assess the effectiveness of ground improvement, it is necessary to quantify both the effect of increased K_C–values and increased penetration resistance on the liquefaction resistance of remediated grounds. In this paper, both of these effects were analyzed based on recommended charts developed earlier by the authors (Harada et al., 2008), and the proportions of their contributions to the increased liquefaction resistance were quantified.
In Japan, the sand compaction pile (SCP) method is the most popular method of remediating liquefiable ground. As illustrated in Fig. 2, this method involves the installation of well-compacted sand piles of large diameters through the process of repeated driving down and extracting motion of a vibrating steel pipe. As the sand pile is compacted and enlarged, the adjacent ground is pushed laterally and compacted, resulting in increased density of the ground as well as increased lateral stress.

To illustrate such increase in density, typical SPT N-values obtained from sites improved by both vibratory SCP and non-vibratory (Nv) SCP procedures are shown in Fig. 3(a) while examples of CPT q_c values from both vibratory and non-vibratory (Nv) SCP–improved ground are illustrated in Fig. 3(b). It is observed that penetration resistances obtained between the installed sand piles are increased as the piles pushed and displaced the adjacent sandy ground.
Moreover, results of cases where various instruments (e.g., pressuremeters and dilatometers) were used to measure the lateral stresses before and after implementation of both vibratory and non-vibratory SCP methods are presented in Fig. 4. In the figure, the relation between the lateral stress ratio, K_C, and improvement ratio, a_s, are plotted 1 month and 2 years after the SCP operation. Note that the data points corresponding to $a_s=0$ refer to the condition prior to the implementation of SCP method. It can be observed that substantial increase in K_C–values are observed after SCP implementation, with larger increase in K_C values occurring at higher a_s.

EFFECTS OF LATERAL STRESS ON PENETRATION RESISTANCE AND LIQUEFACTION RESISTANCE

As mentioned earlier, conventional curves relating penetration resistance and liquefaction resistance are used when evaluating the effectiveness of the SCP method. However, it has been confirmed that any increase in penetration resistance and liquefaction resistance includes the effect of both increased density and increased K_C–value. Therefore, when evaluating liquefaction resistance using penetration resistance alone, a problem of “double count” exists and this needs to be eliminated to accurately reflect the effectiveness of improvement.

Toward this end, the authors have developed a methodology to quantify separately the effect of increased penetration resistance and increased K_C–value on liquefaction resistance (Harada et al.,...
The methodology adopted in the study is summarized below.

(1) The relations between liquefaction resistance R and the penetration resistance (N_1-value or q_{c1}-value) commonly used both in Japan (e.g., JRA, 1996; AIJ, 2001) and in North America (Youd et al., 2001; Robertson et al., 1998) were employed as reference curves. These are based on a number of laboratory tests and performance data during past earthquakes and it was assumed with good reasons that all the relations between R and N_1 or q_{c1} are applicable for deposits consolidated under the $K_c=0.5$ condition. Note that neither the $R-N_1$ relation nor the $R-q_{c1}$ relation were addressed without reference to the relative density D_r.

(2) The effect of relative density D_r is introduced in the reference curves relating liquefaction resistance and penetration resistance mentioned in step (1). This is done by expressing the penetration resistance in terms of D_r^a either through the void ratio range ($e_{\text{max}} - e_{\text{min}}$) or mean grain size D_{50}, using the same formulations proposed by Cubrinovski and Ishihara (1999).

(3) The effects of K_c-conditions on liquefaction resistance R and on penetration resistance N_1 or q_{c1} need to be known. For this purpose, the results of laboratory chamber tests available in the literature (e.g., Harada et al., 2000; Huang and Hsu, 2005; Salgado et al., 1997) were compiled to derive the relations between different K_c-conditions and penetration resistances for soils with different D_r. Moreover, the effects of different K_c-conditions on liquefaction resistance R as investigated by Ishihara and Takatsu (1979) using cyclic torsional test results were employed.

(4) In the final step, the influence of relative density on the above relations was eliminated and the relations between the liquefaction resistance R and penetration resistance N_1 or q_{c1} were derived for different K_c-conditions. Thus, the effect of K_c-values on proposed correlations between R and N_1 or q_{c1} both in Japan and North America were derived.

The details of the above procedure are presented in a paper by Harada et al. (2008) and summarized in the flowchart illustrated in Fig. 5. Based on the steps of evaluation performed as outlined above, the relation between penetration resistance and liquefaction resistance for the case of $K_c=0.5$ was modified to account for different K_c-values. From these relations, charts were derived as shown in Figs. 6 and 7 for penetration resistance in terms of N_1-values and q_{c1}-values, respectively.

Note that in the charts presented, an approximate relation ($N_1)_{90}=1.3(N_1)_{80}$ was incorporated to correct for the difference in energy transfer between Japanese and American SPT practice. Moreover, a 0.65 factor was used to take into account the fact that liquefaction resistance in Japanese codes is expressed in terms of the maximum acceleration, while the average value of acceleration during seismic shaking is used in American practice.
Based on the above discussion, the increase in liquefaction resistance of ground improved by the sand compaction pile method is due to two components i.e., the increase in penetration resistance and increase in K_C-values. From the charts presented, it is noted that for ground with low penetration resistance (loose deposit), the gradient due to increase in K_C is much greater than the gradient coming from the penetration increase alone. This indicates that the effect of K_C on R is more significant than the effect of penetration resistance for a loose state of deposits. On the other hand, when the ground has high penetration resistance (dense deposit), the gradient of the liquefaction curve for $K_C=0.5$ is generally high, indicating that the effect of penetration resistance is much more significant than the effect of K_C. Thus, it can be said that with increasing K_C-value, the liquefaction resistance increases, but its effect becomes smaller at higher density.

4 COMPONENTS CONTRIBUTING TO INCREASE IN LIQUEFACTION RESISTANCE

Fig. 6. Recommended charts correlating SPT N_1-value and liquefaction resistance R for various K_C-values based on: (a) Japanese code; and (b) American practice.

Fig. 7. Recommended charts correlating CPT q_{c1}-value and liquefaction resistance R for various K_C-values based on: (a) Japanese code; and (b) American practice.
To expound on this in more detail, the contributions of increased K_C–value and increased penetration resistance on the resulting increase in liquefaction resistance were analyzed quantitatively. Both liquefaction curves based on Japanese and American practices were considered. For illustration purposes, the data for loose (pre–SCP N_1–value=5 or $q_{c1}=5$ MPa) and dense deposits (pre–SCP N_1–value=15 or $q_{c1}=10$ MPa) were evaluated for $K_C=0.5, 1.0$ and 1.5.

The results are illustrated in Figs. 8 and 9 for N_1–values based on Japanese and American practice, respectively, while the corresponding results are given in Figs. 10 and 11 for q_{c1}–values, respectively. The left graphs in each figure correspond to low initial (pre–SCP) penetration resistances, while the right graphs are for higher penetration resistances. In the graphs, the vertical axes represent the increase in liquefaction resistance ΔR, while the horizontal axes show the increase in penetration resistance, i.e. ΔN_1 or Δq_{c1}. The numbers indicated in the charts correspond to the contribution of increased penetration or increased K_C–value (from 0.5 to 1.0, or from 1.0 to 1.5). For example, consider the left-most graph in Fig. 8(a), representing a loose deposit ($N_1=5$) prior to SCP implementation. After compaction, N_1–value rose to 10, and such increase in penetration resistance alone accounted for 54% of the total increase in liquefaction resistance while the remaining 46% was due to increase in K_C–value from 0.5 to 1.0. On the other hand, if the K_C–value is increased from 0.5 to 1.5 during SCP implementation, the contribution of the increase in N_1–value to the increase in R is about 39%, while the contributions of the increase in K_C from 0.5 to 1.0 and from 1.0 to 1.5 are 33% and 28%, respectively.

For all figures, it can be observed that the larger the increase in penetration resistance, the increase in liquefaction resistance becomes higher. However, compared to the contribution of increase in K_C–values, the contribution of increase in penetration resistance is relatively more significant, accounting for about 50–80% of the increase in liquefaction resistance in the case of high increase in penetration resistance (e.g., if $\Delta N_1=15$ or 20, or $\Delta q_{c1}=7.5$ or 10 MPa). Moreover, it is observed that such trend is stronger when the initial penetration resistance is high or if the penetration testing is done through CPT. Similar trends were observed for the charts correlating R and N_1 or q_{c1} based on North American practice.

5 CONCLUSIONS

In this paper, the effect of increased penetration resistance and increased lateral stresses on the liquefaction resistance of ground improved by the sand compaction pile (SCP) method was investigated through the design charts initially proposed by the authors that can account for various lateral stress ratios K_C. Based on the results of detailed investigation, the larger the increase in penetration resistance, the higher the increase in liquefaction resistance. If the increase in penetration resistance due to SCP is larger, the contribution of increased K_C to the increased liquefaction
resistance becomes smaller, with the trend being more pronounced in initially denser deposits.

The proposed charts presented herein have been developed for clean sand deposits and an extension of this study to ground containing some amount of fines is planned in the future.

Fig. 9. Plots showing the contributions of increased N_1–value and K_C–value on the increase in R for grounds with: (a) low and (b) high initial SPT N_1–values (based on American practice).

Fig. 10. Plots showing the contributions of increased q_{c1}–value and K_C–value on the increase in R for grounds with: (a) low and (b) high initial CPT q_{c1}–values (based on Japanese practice).

Fig. 11. Plots showing the contributions of increased q_{c1}–value and K_C–value on the increase in R for grounds with: (a) low and (b) high initial CPT q_{c1}–values (based on American practice).
REFERENCES

